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ABSTRACT

In recent times several articles have been published
in which the radiative heat flow is computed between plane parallel,
plates with anisotropically scattering atmosphere. An involved
analytical treatment employing matrix calculus and a computer
program as long and involved as the mathematical analysis was
used.

Work presented herein indicates that a usable solution
to the problem can be obtained by simple iteration of the set
of equations which result from approximation of the equation of
radiation transfer. The iteration worked perfectly, the computer
program is simple and short, and the method can accomodate the
same, if not more, parameter variations than the more analytical

treatments.

This study was carried out as part of a research program
being performed under NASA Sustaining Grant NGR-43-001-021

*Assistant Professor of Aerospace Engineering

+Graduate Research Assistant



INTRODUCTION

The solution giving the radiant heat transfer between 2
parallel plates with an anisotropically scattering, absorbing and
emitting gas in the space between the plates for one-dimensional
conditions was presented by (1) (2). By computing monochromatic
heat flow values, changes in gas- and wall-radiation- properties
could be fully accounted for. The scattering mechanism was intro-
duced by the Mie-theory (3). The scattering function may also
be taken from results of measurements (4). To represent the
solution, the previous authors took the equation of radiation trans-
fer in its one-dimensional form and approximated the integral by
Gauss-quadrature. This approach produces a system of equations
of an order according to the order of the quadratures. The whole
vector of discrete radiation intensity values was then computed by
matrix methods, which with the boundary conditions at the two walls
and for arbitrary gas temperatures, resulted in an extensive computer
program.

Because of the quadrature approximations the results will
have a definite error, particularly for gases with high tempera-
ture gradient.

The method used herein is to evaluate the system of equations
resulting from the equation of transfer by direct iteration using
finite difference methods. The computer calculation for the

intensities converges sufficiently and can accomodate very




arbitrary and abrupt temperature gradients in the gas. This latter
capability is important for radiation heat flux analysis e.g. through
strongly scattering boundary layers. The program is straight-forward
and the heat fluxes can be computed at any position in the gas layer.

The iteration scheme can be linked into a calculation loop
for not only radiative but also conduction and convection heat
transfer.

Since in boundary layer type flows the changes in one
direction (y) are much higher than in the other (x, along the stream)
the one-dimensional approach for the radiant heat flux will be a

reasonable approximation to the two-dimensional case.
ANALYSIS

The thermal radiation intensity in a participating medium
is described by the equation of transfer:

g - MIL(ED - - F,5) + 2% ([S(5,5)1. (F,5) -
(s V)Iv(r,s) = vaIv(r’s) + 4wV££S(s,s )Iv(r,s) dw’

+ pk, 1
v bbV (1)
The scattering function S(s,s') is normalized, and the scattering

coefficient ¢, gives the amount of scattered radiation. s, s’

are unit vectors describing & direction in geometrical space. For

the one-dimensional case (see Figure 1), this means the scattering prop-

erties are only x-dependent. The plates are infinitely large and

of uniform temperature., Equation 1 becomes
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The frequency notation has been dropped for clarity of presentation.

S(d) is taken to be the axially symmetric scattering function,

and a is the angle between incoming and scattered ray.

With I being a function of position x and the angle 6 only,

be written (reference (1)):

cos 0 = u
1 27 -
S(u,u’) = =— [  S(Idg’
27 0
The integral becomes:

+1 2

-1

and Equation 2:

it can

(3)

™
[ Ux, ulf S(a) de’} du’ = 27 [ IGxp’)S(u,u’)dp’
0

(4)
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d bb (5)
X W 2u -1 0

The streams of intensity will be treated separately, because of

their independence of each other at the walls (5). I+ is the inten-

sity in a direction toward wall 2, I is the intensity in the reverse
or backward direction. The integral will be approximated by Gauss

quadrature, oy and .

3 are discrete direction cosines for the

quadrature points.

+
dI. k
S S SR aj(s(uiuj)1;+s(ui-pj)1j + L
dx Uvi zui J=1 ' v |~Li
(62)
k = order of the quadrature i =1, 2,3, ...k
a1, k
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K
- Ibb | (6b)
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(signs changed because Wy = - “i)
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A finite difference quotient may now be introduced for the differential
dI.

I Forward, backward or centered differences may be used.
dx

I. - I, I. - 1I.
dIi n+a ‘n n Tn-1
—— = or = or
dx at position n Ax bx

I - Ii

= n+i n-1
2 AX

Computations were made with the three representations. The simple forward
and backward quotients resulted in a more stable iteration scheme
with a 50 times higher possible step size, Ax than the centered
quotient permitted. The truncation error for the simple quotients
is in the order of magnitude of Ax compared to that of (Ax)? for
the centered quotient. 1In spite of the larger error of the simple
quotients, it was established that the accuracy of the simple quotients
was consistent with possible errors introduced by the quadrature.

The reswlts for simple quotient differed by 2% at most
from those with the centered quotient at the highest comparable

step size Ax.

Thus the simple representation of the derivatives was

chosen finally:

K
S S T L I C It T
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'.- KAX
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- BAX, - onrx K * -
I; = (L + =) 17 - == 5 oa (S_y XL+ Sy sIT)
n+i My n Zui =1 ] JJ 3
- R 1,
by n i-1,2,3...%k (70)

These equations express the intensity in a direction iy OF —ly

at a position (n + 1) on the x-axis in terms of the conditions at
point (n), see Figure 2.

Ii+ and Ii_ are vectors of k components. Equations 7

n+1i n+1

are the essential equations for the iteration on the computer.

BOUNDARY CONDITIONS

The radiation flux directed to the walls is partly absorbed
and partly reflected. Additionally, the walls emit radiation. The
walls will be introduced as diffusely reflecting. This condition
can easily be removed as soon as the reflection properties of the
walls are known.

Outgoing intensity at wall 1:
k

23 a.u. I(x =0 ,- uj)

I(x =0, p,) = €1 + I
i : J J
J=1

pb, T P2

The first part is the emission of the wall, the second part is the
reflected heat flux, the sum is the quadrature expression of the

incoming flux:
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Similarly for wall 2 with N the total number of integration steps,

N lying on wall 2

k +
I. =(1—p)1 +2p 2 a.u.I.
i 2" “bby 2 jo1 373 Iy (9)
i=1,2,3. ..k

This shows that the boundary conditions depend on the solution in
the field, because the incoming intensities at each wall must be
known to express the outgoing intensities which represent the
boundary conditions.

These outgoing intensities are equal for all directions Wy

because of the diffuse-wall-assumption.

THE ITERATION SCHEME

Because of the peculiar boundary conditions the iteration
is started in three steps.
First, assuming no participating medium the outgoing intensity

is computed for one wall
+ GN
I, = | (T1) (10a)
L6l 4 eg - €1 ¢ € bb,
N N




or
IiN = . L. (T (10b)

€, + N T el €N N

for two plane parallel plates of emissivity € and N and tempera-
tures Ti and Ty.

One of these results is taken to start the iteration under
the assumption that the gas absorbs and emits only, which reduces

the equations (7) to simply

+ +
I, = (1 = Bféf)Ii RN LAY I,
n+1 ey n Hy n (11a)
- _ pkAX - pKAX
n+1 g ' n ey n (11b)

This step is necessary because the backward intensities I; are not
yet known, if the computation is started at wall 1 and steps
forward to wall 2. The scattering sum in Equation (7) can not be
computed at this stage. Note that the extinction coefficient B
has to be replaced by the absorption « here.

The iteration arrives with (11la) at wall 2, boundary condition

(9) can be computed and now under use of a backward finite difference

quotient
dI ~ In - In-1 . In-i - 1In
dx AX ~AX

the calculation can go back to wall 1

17 = (1 - RKAXy 17, pKOX g
i bb
n-1 Wy n By n (12)



Here boundary condition (8) is used to compute a better value I;

This iteration is run until the difference between two successive
values of one particular intensity does not differ by more than 5%.
For the intensity was taken the wall intensity Ii , because this
insured that all other I values would be accurate enough.

The intensity field thus computed is taken as initial values
for the final iteration with scattering included. Compute with

(7a) to wall 2, use boundary condition (9) and use

k
N -0 N 0 by + S O
I - (1 grx) I, 4+ poAx aj(S_ijIj + S_l_JIJ )+
n-2 n j=1 n n
g 215
KAX (13)
== Iy,
L n

i
on the way back from wall 2 to wall 1
Use boundary condition (8) to turn around at wall 1 for the next
iteration step.

This iteration was stopped when the wall intensity I;
did not deviate for more than 0.01% between two successive iterated
values.

With the whole intensity field given, the monochromatic heat

flux at every position n can easily be computed

7/2 _
Q(x ) =2r [ (If{- I () u du
p=0
with quadrature
k
Q = 27 X a.p. (I o D) (14)
Yn j=1 I3 By 0y
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The black body intensity is

3
I, (D - 2. = (15)
o A%
C exP(ET) -1

Equations 7a,8, 9, 10a, 1la, 12, 13, 14, 15 are the basis of the
computer program, Temperature functions T(x) » Ty, To, Tz . . . 1T
were created in a sub-program.

The scattering functions S(uiuj) = Sij were taken from
(1) for Mie scattering.

=c0

S(up’) =1 + nz a P (uu’) (16)

n=1

with a tabulated in (6), Pn tabulated in (7), o, B, « values were
taken from (1) and (7).

The iteration needs, at the most, 5 to 10 iteration steps
to arrive at the required accuracy and consumes very little computer
time.

So the monochromatic heat fluxes for 15 to 20 frequencies

may easily be computed; and, with a numerical integration

(trapezoidal or Simpson method), the total radiant heat flux can

be found:

00

QR = f QRvdV
o
For this integration is is permissible to assume that the thermal

radiation at the usual temperatures is in the frequency band:

1010 1 < v < 1015 1

sec secC

Since the heat flux computation is worked on 100 to 300

points on the space coordinate, a precise picture of the local

11



heat flux can be given from wall to wall, and also the heat-source

distribution can be computed:

QR(xn+1) - QR(xn)

Qu(x ) =
ST AX (17)

Discussion of Results

To check the iteration method for errors and general
accuracy, results were compared to those of (2) for one data set
(see Figure 3 and Figure 4). The figures give the ratio of the wall
heat fluxes at wall 1 (Figure 3) and at wall 2 (Figure 4) with
scattering to the wall heat fluxes for no participating medium and
black walls for a range of relative particle sizes and linear tem-
perature distribution in the gas. The deviations between the results
of the two methods are written into the figures. The maximum is
+18%. The following reasons will account for the differences:
Author (2) used only a third order quadrature for the intensity
scattering integral, whereas the iteration was worked in fourth
order quadrature, double precision, 250 steps on the x-coordinate.
Comparison runs with the iteration showed that results from third
order quadrature differ up to 15% from those of fourth order
approximation for higher o -values where the scattering function
develops very steep peaks for forward and backward scattering.

The method (2) approximates the temperature profile by a
polynomial which was in the number calculations of seventh order; the
iteration method uses the temperatures at as many points as there are

finite difference steps, in the number calculations actually 250.
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It was observed that the radiant transfer process is very
sensitive to even small temperature changes. Thus it seems necessary
to represent the given temperature profile as true as possible; but
it cannot be said quantitatively what error is introduced by using
an approximating polynomial for the temperature profile.

Comparison runs of the iteration method with forward-
backward finite difference quotient and with centered finite difference
quotient (truncation error proportional to the step size Ax and
proportional to (Ax)2 respectively) showed that using the simple
forward-backward representation with its high iteration stability
range deviates at the most for 2% from the results with centered
finite difference quotient.

To make the errors due to low order quadrature approximation
small, the safest means is to increase the order of quadrature.

This can be done with no complications at all for the iteration
method, provided the integrated Legendre polynomials are worked out
for higher order quadratures.

Figures 5 to 8 show typical results of the iteration method,
giving the radiant heat flux as a continuous function throughout the
gas layer, and giving the corresponding heat source distribution dic-
tated by the assumed linear temperature distribution in the gas.

For the total radiant heat flux the monochromatic heat fluxes and
also the heat source distributions—--would have to be summed up over

the frequencies.

13



Figures 5 to 8 show that for linear gas temperature
the radiation heat flux is much higher in the center region than close to
the walls. The gradients are high in the wall regions. The gas
layer at the hot wall has strong heat sources to keep the highly
emitting layer at the linear temperatures, whereas in the gas layer
close to the cold wall there are strong heat sinks to keep the highly
absorbing particles at their low linear temperatures.

If these sources and sinks did not exist, the temperature
profile in the gas layer would change toward the radiation equili-
brium temperature profile shape, the gas layer close to the hot wall
would be much cooler, and the gas close to the cold wall would be
much hotter than the linear temperature profile says.

To minimize errors due to high local gradients as they
turned out for linear temperatures, the step size in the iteration
method can be varied so as to decrease the size of increment Ax with
high gradients.

A great number of heat flux computations has to be run in
order to anulyze the effects of particle sizes, particle materials,
wall properties, wall temperatures, etc., on radiant transfer and
to find the ways to influence it by suitable seeds or ablation layers.
The immediate knowledge of the heat fluxes throughout the region is
of great help. For this reason, it is thought that the iteration

method presents an appreciably better means than the earlier methods.

14
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